
Safety Analysis of Automotive
Software: From Functional Safety to

Component Testing

Wojciech Mostowski and Mohammad Mousavi
Centre for Research on Embedded Systems

Halmstad University

Elevator Pitch

• Current practice of safety analysis (a la
ISO26262) lacks support for systematic
(de)composition

• Combination of techniques for model-based
testing, learning, and model-based component
mocking can provide such support mechanisms

Nomenclature (simplified)

• Safety: Absence of risk

• Risk: Combination of probability, severity, and
controllability

• Controllability: Avoidance of injury or damage

ISO26262 Item Definition

Hazards and Risks

Functional Safety
Concept

System
Development

Component
Development

Component
Development

Component
Development

Technical Safety:
Goal and Case

Refinement /
Verification

ISO26262

System
Development

Component
Development

Component
Development

Component
Development

Component
Requirements

Tests

Technical Safety:
Goal and Case

Component
Requirements

Tests

Component
Requirements

Tests

Decompositional
Safety Validation

Main Assumption

Models for system-level technical safety requirements

Model-Based Testing

Model-Based Testing of Autosar basic software is the
main scope of the AUTO-CAAS project

Goal

• Decompositional testing: decomposing
system-level technical safety requirements into
tests on element / component

• Compositional safety validation: composing
safety case from the test results

Challenges

• Decomposing the (technical) safety
requirements:
– decompositional model-based testing

• Coming up with models of components /
elements / items:
– automata learning

• Compositional safety validation:
– mocked components, fault injection

Model Based
Testing Ecosystem

cb

a

Model

Test-Case Generator
(UPPAAL Yggdrasil,

Sikuli,
SpecExplorer,

TorXakis,
QuickCheck)

a0
1

a b c

idle

Next

Impl. Under Test

Adaptor

Test Result:
pass or fail

(+ counterexample)

Coverage Metrics

Traceability Info.

Test DB

9

Goal

• Decompositional testing: decomposing
system-level technical safety requirements into
tests on element / component

• Compositional safety validation: composing
safety case from the test results

Decompositional Model-Based Testing

S e
e

e
c

S e
e

e

S(e)

for all c,
(c || e) conforms S iff c conforms S(e)

N. Noroozi, M.R. Mousavi, and T.A.C. Willemse.
Decomposability in Input Output Conformance Testing. MBT 2013.

Decompositional Model-Based Testing

S e
e

e

Challenge: How to find a model S(e) for e?

Decompositional Model-Based Testing

S(e)

Automata Learning

Decompositional Model-Based Testing

MBT Tool cb
a

S(e)

c Mocked Environment

Decompositional Model-Based Testing

QuickCheck cb
a

S(e)

c

e
(Environment Components)

Model-Based Mock:
Intercept, log, and forward

Simulated Environment

Decompositional Model-Based Testing

MBT Tool cb
a

S(e)

c

e
(Environment Components)

Model-Based Mock:
Inject fault,
Intercept, log, and forward

Benjamin Vedder,
Testing Safety-Critical Systems Using Fault Injection and Property-Based Testing,
Licentiate Thesis, Halmstad University, 2015.

Conclusions

• Compositional trajectory for safety validation:
– starting from system-level requirements
– learning environments models
– decomposing the requirements into component

requirements
– using mock models to intercept and forward calls

and inject faults

Thank You Very Much!

Wojciech Mostowski
wojciech.mostowski@hh.se

