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Elevator Pitch

• Current practice of safety analysis (a la 
ISO26262) lacks support for systematic 
(de)composition

• Combination of techniques for model-based 
testing, learning, and model-based component 
mocking can provide such support mechanisms



Nomenclature (simplified)

• Safety: Absence of risk 

• Risk: Combination of probability, severity, and 
controllability

• Controllability: Avoidance of injury or damage
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Main Assumption

Models for system-level technical safety requirements

Model-Based Testing

Model-Based Testing of Autosar basic software is the 
main scope of the AUTO-CAAS project 



Goal

• Decompositional testing: decomposing 
system-level technical safety requirements into 
tests on element / component 

• Compositional safety validation: composing 
safety case from the test results 



Challenges

• Decomposing the (technical) safety 
requirements: 
– decompositional model-based testing

• Coming up with models of components / 
elements / items: 
– automata learning

• Compositional safety validation:
– mocked components, fault injection 
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Decompositional Model-Based Testing
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N. Noroozi, M.R. Mousavi, and T.A.C. Willemse. 
Decomposability in Input Output Conformance Testing. MBT 2013.  

Decompositional Model-Based Testing
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Challenge: How to find a model S(e) for e?

Decompositional Model-Based Testing
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Automata Learning
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MBT Tool cb
a

S(e)

c Mocked Environment



Decompositional Model-Based Testing
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Decompositional Model-Based Testing
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Model-Based Mock:
Inject fault, 
Intercept, log, and forward  

Benjamin Vedder, 
Testing Safety-Critical Systems Using Fault Injection and Property-Based Testing, 
Licentiate Thesis, Halmstad University, 2015.



Conclusions

• Compositional trajectory for safety validation:
– starting from system-level requirements
– learning environments models
– decomposing the requirements into component 

requirements 
– using mock models to intercept and forward calls 

and inject faults 
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